- Home
- General Aptitude
- Logarithms
6.
What is the value of log(ab2) – log(ac) + log(abc4) – 3log(bc)?
- A.2
- C.-2
- B.0
- D.1
- Answer & Explanation
- Report
Answer : [D]
Explanation :
Explanation :
| log(ab2) - log(ac) + log abc4 - 3log(bc) | |||||||||
| = log ab2 - logac + log abc4 - log b3c3 | |||||||||
|
|||||||||
| loga a = 1 | |||||||||
7.
The value of log327 is
- A.2
- C.4
- B.3
-
D.
1 2
- Answer & Explanation
- Report
Answer : [B]
Explanation :
Explanation :
| Let log327 = x |
| 3x = 27 |
| 3x = 33 |
| x = 3 |
8.
If a log10 m = blog1000 m, then the value of b =
- A.2a
- C.a
- B.3a
-
D.
1 a 2
- Answer & Explanation
- Report
Answer : [B]
Explanation :
Explanation :
|
|||||||||||
|
|||||||||||
|
|||||||||||
|
|||||||||||
| Note: When base is taken cube root the index is also taken cube root. | |||||||||||
9.
| The value of |
|
+ |
|
+ |
|
is |
- A.1
- C.log 2
- B.2
-
D.
1 2
- Answer & Explanation
- Report
Answer : [B]
Explanation :
Explanation :
|
|||||||||||||
| = logxyz(xy x yz x zx) | |||||||||||||
| = logxyz(xyz)2 | |||||||||||||
| = 2logxyzxyz | |||||||||||||
| = 2 x 1 = 2 | |||||||||||||