Home
1.
If the variance of 5 values is 5.6. What is the standard deviation of those values
  • A.
    4.35
  • C.
    2.85
  • B.
    3.95
  • D.
    25.65
  • Answer & Explanation
  • Report
Answer : [B]
Explanation :
Standard deviation = Variance = 15.6  = 3.95  
Report
Name Email  
2.
Find the range of the following data
143, 148, 135, 150, 128, 139, 149, 146, 151, 132
  • A.
    23
  • C.
    25
  • B.
    24
  • D.
    22
  • Answer & Explanation
  • Report
Answer : [A]
Explanation :
The maximum value = 151
The minimum value = 128
Range = maximum value – minimum value = 151 – 128 = 23
Report
Name Email  
3.
Calculate the mean of the following
Class interval 90 - 100 80 - 90 70 - 80 60 - 70 50 - 60
Frequency 10 15 14 12 9
  • A.
    73.2
  • C.
    74.6
  • B.
    75.8
  • D.
    71.5
  • Answer & Explanation
  • Report
Answer : [B]
Explanation :
Class interval Midpoint (xi) Frequency (fi) fixi
90 - 100 95 10 950
80 - 90 85 15 1275
70 - 80 75 14 1050
60 - 70 65 12 780
50 - 60 55 9 495
    Ʃfi = 60 Ʃfixi = 4550
Mean x =
Ʃfixi
Ʃfi
=
4550
60
 = 75.83  
Report
Name Email  
4.
In a moderately asymmetrical series, the values of arithmetic mean and mode are 26.1 respectively. The value of the median is
  • A.
    35.3
  • C.
    22.4
  • B.
    28.0
  • D.
    25.1
  • Answer & Explanation
  • Report
Answer : [C]
Explanation :
Mode = 3 Median – 2 Mean
 
 
 

Median =

mode + 2 mean
3
=
26.1 + 2(20.6)
3
=
26.1 + 41.2
3
     

 

=
67.3
3
 = 22.43    
Report
Name Email  
5.
In the following table find, the average score of the students
Marks (X) 20 30 40 50 60 70
No. of students (f) 8 12 20 10 6 4
  • A.
    39
  • C.
    42
  • B.
    40
  • D.
    41
  • Answer & Explanation
  • Report
Answer : [D]
Explanation :
Mean =
Ʃfx
Ʃf
 
  Ʃfx = 20 x 8 + 30 x 12 + 40 x 20 + 50 x 10 + 60 x 6 + 70 x 4  
  = 160 + 360 + 800 + 500 + 360 + 280  
  = 2460  
Mean =
Ʃfx
Ʃf
=
2460
60
 = 41
Report
Name Email