- Home
- General Aptitude
- Logarithms
1.
If log(k2 – 4k + 5) = 0, then the value of k is
- A.0
- C.2
- B.1
- D.3
- Answer & Explanation
- Report
Answer : [C]
Explanation :
Explanation :
log(K2 - 4K + 5) = 0 | ||||||||||
|
||||||||||
|
||||||||||
|
||||||||||
2.
Log xy = 100 and logx2 = 10, then the value of y is
- A.210
- C.21000
- B.2100
- D.210000
- Answer & Explanation
- Report
Answer : [C]
Explanation :
Explanation :
|
||||
|
||||
3.
The characteristic of the logarithm 332.6 is
- A.3
- C.2
- B.4
- D.1
- Answer & Explanation
- Report
Answer : [C]
Explanation :
Explanation :
Characteristic = 3 -1 = 2 |
4.
If log4 log2 log3 (2x – 1) = |
|
, find x |
- A.82
- C.51
- B.41
- D.62
- Answer & Explanation
- Report
Answer : [B]
Explanation :
Explanation :
|
|||||||
|
|||||||
|
|||||||
2x - 1 = 34 = 81 | |||||||
2x = 82 | |||||||
x = 41 | |||||||
5.
If logab = |
|
, logbc = |
|
and logca = |
|
, the value of k is |
- A.25
- C.30
- B.35
- D.20
- Answer & Explanation
- Report
Answer : [C]
Explanation :
Explanation :
|
||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||